文章编号: 0253-2697(2024)07-1122-08 DOI:10.7623/syxb202407007

孔隙介质中超临界 CO₂ 泡沫稳态传输机制及数值模拟方法

魏 兵¹ 杨孟珂¹ 赵金洲¹ Kadet Valeriy² 蒲万芬¹

(1. 西南石油大学油气藏地质及开发工程全国重点实验室 四川成都 610500; 2. 古勃金国立石油与天然气大学 俄罗斯莫斯科 119991)

摘要:CO₂泡沫是降低气相流度,扩大气体波及体积和提高 CO₂ 封存效率的现实手段,其孔隙介质中的稳态传输行为对表征泡沫流 变特征和流度控制能力至关重要。针对超临界 CO₂泡沫稳态传输机制不清的问题,建立了模拟超临界 CO₂泡沫长期稳态流动的 实验装置及方法,系统研究了气液表观流速、泡沫质量对其传输行为的影响规律,绘制了稳态压力梯度等值线图版,创建了表征低 干度区域上翘行为的液膜拖拽力函数模型,建立了描述孔隙介质中超临界 CO₂泡沫稳态传输机制的数值模拟方法。研究结果表 明:①在渗透率为 302 mD 的孔隙介质中,超临界 CO₂泡沫稳态传输产生的压力梯度在 0.620~1.872 MPa/m;②超临界 CO₂泡沫 的稳态传输不符合传统的高、低干度机制,低干度区域压力梯度等值线上翘,即随着液相流速增大,压力梯度逐渐降低;③在传统隐 性泡沫结构模型的基础上,引入液膜拖拽力函数模型,可以准确描述超临界 CO₂泡沫的稳态传输机制,特别是低干度区域的上翘行 为;④在高、低干度区域,超临界 CO₂泡沫均表现出剪切变稠的流变特征。

关键词:CO2 驱油和封存;流动控制;超临界 CO2 泡沫;稳态传输机制;数值模拟方法

中图分类号:TE311 文献标识码: A

Steady-state flow regimes and numerical simulation method of supercritical CO₂ foam in porous media

Wei Bing¹ Yang Mengke¹ Zhao Jinzhou¹ Kadet Valeriy² Pu Wanfen¹

 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Sichuan Chengdu 610500, China; 2. Gubkin Russian State University of Oil and Gas, Moscow 119991, Russia)

Abstract : CO_2 foam is a practical means to reduce the mobility of gas phase, and improve the sweep efficiency of oil reservoir and CO_2 storage efficiency, whose steady-state flow behaviors in porous media are critical to characterize the rheological characteristics and mobility control ability of foam. In response to the unclear steady-state flow regimes of supercritical CO_2 foam in porous media, the authors established an experimental device and method for simulating the long-term steady-state flow of supercritical CO_2 foam, systematically investigated the influences of superficial velocities of gas and liquid, foam quality on the steady-state flow behaviors, drawn the contour map of steady-state pressure gradient, built the drag force function model of liquid film for characterizing the upwarp behavior in low quality regime, and also developed a numerical simulation method for describing the steady-state flow regimes of supercritical CO_2 foam in porous media with a permeability of 302 mD ranges from 0. 620 MPa/m to 1. 872 MPa/m. (2) The steady-state flow of supercritical CO_2 foam in porous media does not conform to the traditional high and low quality regimes, and the pressure gradient gradually decreases. (3) On the basis of the traditional implicit-texture foam model (IT model for short), the liquid film drag force function model can accurately describe the steady-state flow regime of supercritical CO_2 foam, the steady-state flow regime of supercritical CO_2 foam in low quality area tilts upwards, i. e., as the liquid phase flow velocity increases, the pressure gradient gradually decreases. (3) On the basis of the traditional implicit-texture foam model (IT model for short), the liquid film drag force function model can accurately describe the steady-state flow regime of supercritical CO_2 foam, especially the upwarp behavior in low quality regions, the supercritical CO_2 foam shows the shear thickening rheological characteristics.

- Key words:CO₂ oil displacement and storage; flow control; supercritical CO₂ foam; steady-state flow regime; numerical simulation methods
- **引用:**魏兵,杨孟珂,赵金洲,Kadet Valeriy,蒲万芬. 孔隙介质中超临界 CO₂ 泡沫稳态传输机制及数值模拟方法[J]. 石油学报, 2024,45(7):1122-1129.
- Cite: WEI Bing, YANG Mengke, ZHAO Jinzhou, KADET Valeriy, PU Wanfen. Steady-state flow regimes and numerical simulation method of supercritical CO₂ foam in porous media[J]. Acta Petrolei Sinica, 2024, 45(7):1122-1129.

基金项目:国家重点研发计划项目(2023YFE0120700)、国家自然科学基金项目(No. 52274041)、四川省杰出青年科学基金项目(2023NSFSC1954)和 高等学校学科创新引智计划项目(D18016)资助。

第一作者及通信作者:魏 兵,男,1983 年 8 月生,2013 年获加拿大新布伦瑞克大学博士学位,现为西南石油大学教授、博士生导师,主要从事复杂油 气藏提高采收率理论和技术研究。Email:bwei@swpu.edu.cn

近年来中国 CO₂ 排放量始终处于缓慢增加状态, 减排压力大,亟需发展多元化的 CO₂ 资源化利用路径 和方法。CO2 驱油和封存技术可将工业过程排放的 CO2 注入油藏,通过改变储层和流体的物理化学性 质,实现提高原油采收率和地下空间封存 CO, 的目 标。该项技术兼具经济效益和社会效益,是目前最为 有效可行的 CO2 减排技术之一[1-2]。据统计,中国 CO2 驱油技术可增产原油约为 7×10⁸t,CO2 地质封 存容量高达 20×10⁸t^[3],具有广阔的应用前景^[4-7]。但 与北美地区的海相沉积不同,中国已开发的主力油田 多为陆相沉积,成藏条件和赋存规律复杂,储层具有原 油黏度高、地层能量低、非均质性强等不利因素[8-13],导 致注入的 CO₂ 极易发生黏性指进、重力分异、气窜等现 象,使油藏波及体积小,CO2利用率低。矿场应用表明, 中国油田 CO2 驱可提高原油采收率约为 20%^[14-15], 而 北美地区则可达 50% 以上(如加拿大 Weyburn 油 田)^[16]。因此,必须研究 CO₂ 流度控制方法,以提高 CO₂驱油和封存的效率。

CO₂泡沫是一种液相包裹气相的热力学不稳定 分散体系,在孔隙介质中传输时可以增强气泡的毛细 管阻力[17-18],提高气体捕集数量,显著降低气相流 度(10~1000倍),抑制 CO。黏性指进、重力超覆和气 窜现象,扩大气体波及体积。同时,CO2泡沫可以增 加波及区域含气饱和度和毛细管束缚力,降低气体上 浮速度,缓解上部盖层压力,提高 CO2 封存量及安全 性[19]。泡沫在孔隙介质中的传输机制主要包括瞬态 传输和稳态传输[20-21],其中稳态传输是指在孔隙介质 中气泡生成数量和破灭数量达到动态平衡状态时的传 输,对准确表征泡沫流变特征和流度控制能力至关重 要。传统观点认为,泡沫稳态传输包含两种基本机制: ①高干度(高气液比)机制,压力梯度与气相流速无关, 受毛细管压力和粗化行为影响;②低干度(低气液比) 机制,压力梯度与液相流速无关,受气泡圈闭和运移影 响^[22]。但超临界 CO₂ 泡沫在孔隙介质中的稳态流动 行为鲜有报道,其传输机制尚不明确。

为此,笔者首先建立了模拟超临界 CO₂ 泡沫长期 稳态流动的实验装置及方法,深入研究了气液流速、泡 沫质量对泡沫流动行为的影响规律,绘制了压力梯度 等值线图版,发现了超临界 CO,泡沫在低于度区域的 异常上翘特征,即压力梯度等值线未呈现水平的机制 状态,而是出现向上倾斜的状态(相同气相流速下,随 着液相流速增大,压力梯度逐渐降低)。基于隐性泡沫 结构模型(简称 IT 模型)^[23],创建了表征上翘特征的 液膜拖拽力函数模型,最终建立了描述超临界 CO2 泡 沫稳态传输机制的数值模拟方法。

稳态流动实验 1

1.1 实验材料和装置

实验材料包括烷基糖苷(质量分数为50%)、CO2 气体(纯度为 99.9%)、NaCl 固体(分析纯)和夫离子 水(DI)。表面活性剂溶液(S.S)是质量分数 0.5 %的 烷基糖苷溶液(基于质量分数为 3.0% NaCl 溶液配 制)。实验装置主要包括温度控制系统(恒温箱)、压力 控制和监测系统(回压阀和压力传感器)、注入系统(平 流泵,精度为0.001 cm3/min;中间容器)、孔隙介质模 型(填砂管)和液体回收系统(图1)。孔隙介质模型由 60 目石英砂填制而成(均质),模型直径为4.2 cm,长 度为41cm,内置6个测压点,间距为5.0cm。实验温 度为 50 ℃,实验压力控制在 8.0 MPa(回压阀),CO₂ 处于超临界状态。

1.2 实验方法

实验采用气液同注模式,以气相和液相表观流 速(Ug和Uw)为变量,共设计开展 20 组实验,研究超 临界 CO₂ 泡沫在孔隙介质中的稳态流动行为。为减 小泡沫前端进入效应和毛细管末端效应的影响,选 择填砂管第3段压差(Δp_3)作为泡沫稳态流动的压 差(图1)^[24-25]。

具体实验步骤为:①填制填砂管,称量干重。②准 备表面活性剂溶液和 CO2 气体,连接实验装置,系统温度 升至 50℃。③采用质量分数为 3.0 %的 NaCl 盐水测量 填砂管的孔隙度和渗透率($\phi = 0.22$, $K_w = 302$ mD)。④设 置回压阀,检查气密性。用去离子水将回压阀压力提 高至 8.0 MPa;将 CO₂ 气体以 1 cm³/min 的流速注入 实验系统,持续4h,检查中间容器、管线和阀门连接处 及回压阀的气密性,排除杂质气体。⑤稳态传输实验。 将表面活性剂溶液和 CO₂ 按照设定的表观流速注入 填砂管,记录填砂管各段压差,每组实验持续10h以 上,以保证达到稳定流动状态。

需要注意的是,每组稳态流动实验中间不可中断, 必须连续进行;同时,稳态流动压差波动必须稳定在固 定数值附近。

泡沫稳态传输数学模型 2

在 IT 泡沫模型中,主要采用 $F_{\rm m}$ 和 $f_{\rm mmob}$ 两个参 数量化气体流度。其中,F_m 表征气相渗透率变化,无 泡沫的气相相对渗透率 K_n,含泡沫的气相相对渗透 率 K_{rg}^{f} 为:

$$K_{\rm rg}^{\rm f} = K_{\rm rg}^0 \cdot F_{\rm m} \tag{1}$$

 f_{nmob} 表征泡沫强度,可获得的最大流度降低因子为: F

$$\Gamma_{\rm m} = 1/(1+f_{\rm mmob} \cdot F_1 \cdot F_2 \cdot \cdots \cdot F_n)$$
 (2)

Fig. 1 Experimental device of steady-state supercritical CO₂ foam flow

实验仅包括含水饱和度函数 F_2 和毛细管数函数 F_5 。当 $S_w = f_{mdry}$ 时,泡沫物性受泡沫稳定性控制,是高干度机制泡沫。当 $S_w > f_{mdry}$ 时,泡沫物性受泡沫强度控制,是低干度机制,泡沫存在且稳定。当 $S_{wc} < S_w < f_{mdry}$ 时,泡沫由高干度泡沫向无泡沫状态过渡。 F_2 函数的表达式为:

$$F_2 = 0.5 + \frac{\arctan\left[e_{\text{pdry}}(S_{\text{w}} - f_{\text{mdry}})\right]}{\pi} \qquad (3)$$

泡沫在孔隙介质中的流变表现不同的剪切行为, 如牛顿流体行为、剪切变稠行为、剪切稀释行为等。当 泡沫在孔隙介质中的毛细管系数大于该临界值时,会 出现非牛顿泡沫流动行为。

当 $e_{pcap} = 0$ 时,泡沫为牛顿流体;当 $e_{pcap} > 0$ 时,泡沫 为剪切稀释流体;当 $e_{pcap} < 0$ 时,泡沫为剪切变稠流体。

F₅ 函数的表达式为:

$$F_{5} = \begin{cases} \left(\frac{f_{\text{mcap}}}{N_{\text{ca}}}\right)^{e_{\text{pcap}}}, N_{\text{ca}} \ge f_{\text{mcap}} \\ 1, \quad \ddagger \& \end{cases}$$
(4)

$$N_{\rm ca} = K \nabla p / \sigma_{\rm wg} \tag{5}$$

另外,根据达西定律,通过孔隙介质的流量Q为:

$$Q = KA \Delta p / (\mu L) \tag{6}$$

已知流体流量是流体通过的截面 A 与流体流速

U的乘积,即:

$$Q = AU \tag{7}$$

根据式(6)和式(7),可获得气相和液相线性流速:

$$U_{\rm g} = K \Delta p / (\mu_{\rm g} L) \tag{8}$$

$$U_{\rm w} = K \Delta p / (\mu_{\rm w} L) \tag{9}$$

结合 Corey 模型,得到气相相对渗透率和液相相 对渗透率:

$$K_{\rm rg} = K_{\rm rg}^0 \left(\frac{S_{\rm g} - S_{\rm gr}}{1 - S_{\rm wc} - S_{\rm gr}} \right)^{n_{\rm g}}$$
(10)

$$K_{\rm rw} = K_{\rm rw}^0 \left(\frac{S_{\rm w} - S_{\rm wc}}{1 - S_{\rm wc} - S_{\rm gr}} \right)^{n_{\rm w}}$$
(11)

3 实验结果与分析

3.1 超临界 CO₂ 泡沫稳态流动实验

根据泡沫稳态流动实验要求,每组实验要随机选择一个流速完成,不能按照定气相流速或定液相流速的方式完成,以免对泡沫生成或破灭行为造成干扰。表1是随机设计的20组实验(U_g 和 U_w)及每组实验产生的稳态压力梯度(∇p_3)。由于气液总流速过低,第17组和第18组实验未能达到泡沫稳定流动状态。由在 $U_g = 2.12 \times 10^{-5}$ m/s、 $U_w = 2.12 \times 10^{-6}$ m/s、 $f_g = 90.91%$ 的实验条件下监测的各段压差曲线(图2)可以看

出,实验前 10 h 各段压差波动较大,说明超临界 CO₂ 泡沫 流动尚未达到稳定状态; 10 h 后压差曲线趋于平稳,第 3 段的压力梯度(∇p_3)稳定在 0.748 MPa/m(表 1)。

$$f_{\rm g} = U_{\rm g}/U_{\rm t} \tag{12}$$

$$U_{\rm t} = U_{\rm g} + U_{\rm w} \tag{13}$$

表 1 稳态传输实验的流速设计及产生的稳态压力梯度 Table 1 Flow velocity design and steady-state pressure gradient generated in steady-state flow experiments

	-	-		-	
序号	$U_{\rm w}/$ (10 ⁻⁶ m/s)	$U_{\rm g}/$ (10 ⁻⁶ m/s)	$f_{\rm g}/_{\rm \%}$	$U_{\rm t}/$ (10 ⁻⁶ m/s)	$ abla p_3 / (MPa/m) $
1	8.47	3. 53	24. 91	12.00	1.214
2	8.47	10. 58	55.56	19.05	1. 192
3	8.47	14.11	62.50	22.58	1.643
4	8.47	21.17	71.43	29.64	1.872
5	6.35	7.06	52.63	13.41	0. 721
6	6.35	10.58	62.50	16.93	1.198
7	6.35	14.11	68.97	20.46	1.110
8	6.35	21.17	76.92	27.52	1.318
9	4.23	7.06	62.50	11.29	0.873
10	4.23	10.58	71.43	14.81	0.882
11	4.23	14.11	76.92	18.34	0. 912
12	4.23	21.17	83.33	25.40	0.753
13	2.12	7.06	76.92	9.18	0.643
14	2.12	10.58	83.33	12.70	0.620
15	2.12	14.11	86.96	16.23	0.689
16	2.12	21.17	90.91	23.29	0.748
17	0.88	3. 53	80.00	4.41	
18	0.88	7.06	88.89	7.94	
19	0.88	21.17	96.00	22.05	0.841
20	4.41	3. 53	44.44	7.94	0.760

根据实验测得的稳态压力梯度(表 1),利用线性 三角插值法绘制了超临界 CO₂泡沫稳态传输压力梯 度等值线图版(图 3)。从图 3 可以看出,通过合理设 计气液流速,成功捕捉到了泡沫的高干度机制和低干 度机制。高干度机制轮廓线从 $\nabla p = 0.679$ MPa/m 延 伸到 1.583 MPa/m,压力梯度轮廓线排布逐渐密集; ∇p 从 1.244 MPa/m 到 1.583 MPa/m 的轮廓线排布 均匀,说明泡沫表现出剪切变稠行为。这主要是由于 高气液比导致泡沫尺寸变小,泡沫流动阻力变大^[26]。

低干度机制轮廓线 U_w 从 4.23×10⁻⁶ m/s 到 8.47×10⁻⁶ m/s 可以发现,在上述液相流速范围内,压 力梯度的等值线并不是水平排列,而是存在上翘趋势, 即相同气相流速下,随着液相流速增大,压力梯度逐渐 降低,这一点与传统低干度机制(压力梯度与液相流速 无关)不符。该异常现象可从泡沫物性角度分析:在泡 沫的低干度区域,U_g 保持不变,f_g 会随着 U_w 增加而 减小,在这个过程中泡沫尺寸维持在孔隙介质的平均 孔隙大小。根据达西定律,泡沫含水饱和度会随着 U_w 的增大而增大,气泡液膜随之变厚,从而降低了毛细管 对泡沫液膜的拖拽力,特别是对于气液表面张力较低 的 CO₂ 气体,导致泡沫表观黏度降低,气相相对流度 增大^[27-28]。相比之下,氮气泡沫则会产生较大的压力 梯度和表观黏度^[22]。

图 3 超临界 CO₂ 泡沫稳态传输的压力梯度等值线图版 Fig. 3 Pressure gradient contour chart for steady-state supercritical CO₂ foam flow

对于超临界 CO₂ 泡沫低干度区域的上翘行为,现 有的泡沫模拟器(如 CMG)均无法模拟^[29],IT 泡沫模 型也未包括泡沫液膜拖拽力、含水饱和度和表观黏度 等因素。因此,需要构建新的函数模型表征该上翘特 征,进而完善 IT 泡沫模型及数值模拟方法。

3.2 超临界 CO₂ 泡沫稳态传输数值模拟

低干度区域的上翘行为本质是由液膜拖拽力引起。因此,笔者参考 F₅ 的表达方式[式(4)]建立了描述 泡沫液膜拖拽力和含水饱和度关系的函数模型(F_{drag})。 泡沫液膜含水饱和度越大,泡沫压力梯度降低幅度越 明显,低干度区域等值线的上翘趋势越大,即F_{drag}与含 水饱和度为正相关关系。F_{drag}函数模型和新的气相相 对渗透率降低因子表达式为:

$$F_{\rm drag} = \begin{cases} (S_{\rm w}/f_{\rm mdry})^{e_{\rm pdrag}}, S_{\rm w} \ge f_{\rm mdry} \\ 1, S_{\rm w} < f_{\rm mdry} \end{cases}$$
(14)
$$F_{\rm mnew} = 1/(1 + f_{\rm mmob} \cdot F_1 \cdot F_2 \cdot \cdots \cdot F_n \cdot F_{\rm drag})$$

(15)

F_{drag}模型参数定义:①假设 f_{mdry}在孔隙介质中为 定值,e_{pdrag}越小,泡沫液膜拖拽力越小,气相相对渗透 率增大;②假设 e_{pdrag}在孔隙介质中为定值,随着泡沫含 水饱和度增大,液膜拖拽力变小,泡沫气相相对渗透率 增大。

采用耦合 F_{drag}的新 IT 泡沫模型对实验数据进行 拟合分析,模型中的参数可通过达西定律和 Corey 模 型迭代计算获得。具体方法为:

液相和气相流速分别为:

$$U_{\rm w} = KK_{\rm rw}(S_{\rm w}^*) \,\nabla p/\mu_{\rm w} \tag{16}$$

$$U_{\rm g} = \frac{KK_{\rm rg}^{0}(S_{\rm w}^{*}) \left(\frac{1}{1+f_{\rm mmob}^{*}}\right) \nabla p}{\mu_{\rm g}}$$
(17)

存在泡沫时液相相对渗透率 $K_{rw}(S_{w}^{*})$ 和气相相 对渗透率 $K_{rg}(S_{w}^{*})$ 为(Corey 模型^[29]):

$$K_{\rm rw}(S_{\rm w}^{*}) = K_{\rm rw}^{0} \left(\frac{S_{\rm w}^{*} - S_{\rm wc}}{1 - S_{\rm wc} - S_{\rm gr}}\right)^{n_{\rm w}}$$
(18)

$$K_{\rm rg}(S_{\rm w}^{*}) = K_{\rm rg}^{0} \left(\frac{S_{\rm g} - S_{\rm gr}}{1 - S_{\rm wc} - S_{\rm gr}} \right)^{n_{\rm g}}$$
 (19)

流变行为因子 *e*_{pcap}的确定方法为:取一定值 *U*_w,以 该点在低干度等值线区域作横坐标轴的垂线,将获得的 一组气相流速 *U*_g 与对应的压力梯度作双对数数值处 理,并线性拟合对数化的数据,获得斜率σ的计算公式。

$$\sigma \approx 1/(1 + e_{\rm pcap}) \tag{20}$$

$$N_{\rm ca0} = K \nabla p_0 / \sigma_{\rm wg} \tag{21}$$

$$\frac{\nabla p_0}{\nabla p_n} = \frac{N_{\text{ca0}}}{f_{\text{mcapn}}} \tag{22}$$

液膜拖拽力因子 e_{pdrag} 的拟合:选定一个固定的 U_g ,在物理模拟图版中作水平线,与压力梯度等值线 相交取多个点,在双对数坐标上绘制压力梯度与液相 流速的关系。根据该线的斜率 ω ,计算 e_{pdrag} 值(图 4): $\omega \approx 1/(1 + e_{pdrag})$ (23)

Fig. 4 Calculation method of
$$e_{pdrag}$$
 in F_{drag} model

参数 f_{mmob} 为:

 $f_{\rm mmob} = f_{\rm mmob}^* / (f_{\rm mcap} / N_{\rm ca})^{e_{\rm pcap}} = f_{\rm mmob}^* / F_5$ (24)

*e*_{pdry}通常取 *f*_{mmob}的 10 倍,属经验值。*e*_{pdry}在数值 模拟图版中表征了高、低干度机制等值线之间拐角的 尖锐程度,具体数值根据拟合效果调整。通过上述迭 代运算,可以获得 IT 模型中 *e*_{pcap}、*f*_{mmob}、*f*_{mdry}、 *e*_{pdry}和 *e*_{pdrg}参数,进而根据实验数据开展数值模拟,绘制 超临界 CO₂泡沫的压力梯度等值线图版。图 5 是数值模 拟采用的气液相渗曲线^[22,30]。图 6 是超临界 CO₂泡沫稳 态传输的压力梯度模拟图版。其中图 6(a)是基于传统方 法模拟得到的等值线图版,*F*_m 仅包含了 *F*₂ 和 *F*₅ 函数模 型[式(2)]。从图 6(a)可以明显看出,该方法的模拟精度 较低,无法反映低干度区域轮廓线上翘行为。

图 6 超临界 CO₂ 泡沫稳态传输的压力梯度模拟图版 Fig. 6 Simulated pressure gradient chart for steady-state supercritical CO₂ foam flow

采用耦合 F_{drag}的新 IT 模型开展数值模拟,并重 新绘制压力梯度等值线图版[图 6(b)]。从图 6(b)可 以看出,新模型可以准确描述超临界 CO₂ 泡沫低干度 区域轮廓线的上翘特征,说明新 IT 模型模拟精度高, 更适用于模拟超临界 CO₂ 泡沫的稳态传输机制。

表 2 是模拟计算得到的参数。其中, e_{peap}为负值, 表明超临界 CO₂ 泡沫在该区域呈现剪切变稠特征。 这与 Kim 等^[31]的研究结果一致,其主要原因是高渗 流速度下泡沫变细,流动阻力增大。

表 2 超临界 CO₂ 泡沫 IT 模型参数 Table 2 IT model parameters of supercritical CO₂ foam

参数	数值	参数	数值
$f_{\rm mdry}$	0. 580 8	$f_{\rm mmob}^*$	110
$e_{ m pcap}$	- 0. 144 5	$f_{\rm mmob}$	99
$e_{ m pdrag}$	- 8.0000	$e_{\rm pdry}$	5 000

4 结 论

(1)超临界 CO₂泡沫稳态传输过程中,低干度区 域压力梯度轮廓线存在上翘趋势,即相同气相流速下, 随着含水饱和度升高,压力梯度降低。

(2)建立了描述超临界 CO₂ 泡沫上翘行为的液 膜拖拽力模型 *F*_{drag},发展和完善了传统 IT 泡沫模型, 准确模拟了孔隙介质中超临界 CO₂ 泡沫的稳态传输 机制。

(3) 高、低干度区域超临界 CO₂ 泡沫的流变行为 均表现为剪切变稠。

致谢 阿联酋大学唐金玉博士在稳态泡沫传输的 实验设计和数值模拟方面给予重要建议,杨琼在前期基础实验上给予大力支持和帮助,在此表示诚挚的感谢。

符号注释: U_{g} 一气相流速,m/s; U_{w} 一液相流速, $m/s; \Delta p_3$ 一填砂管第3段压差, MPa; ϕ —孔隙度; K_w 一液测渗透率, mD; F_m 一气相相对渗透率降低因 子;K⁰_{rg}一无泡沫的气相相对渗透率(气相端点相对渗 透率);K^f_{re}一含泡沫的气相相对渗透率;f_{mmob}一泡沫 强度; F_n —IT泡沫模型物性函数; F_1 —表面活性剂浓 度的影响函数; F_2 一含水饱和度的影响函数; F_3 一含 油饱和度的影响函数; F_4 —油相组成的影响函数; F_5 一毛细管数的影响函数; F_6 一盐度的影响函数; S_w 一含水饱和度; f_{mdrv} 一极限含水饱和度, 等同于临界 含水饱和度(S**);S**一临界含水饱和度;S**一束缚水 饱和度;epdry一含水饱和度因子;fmcap一临界毛细管数; e_{pcap} 一流变行为因子; N_{ca} 一毛细管数;K一渗透率,m²; ∇p —压力梯度, MPa/m; σ_{wg} —气液表面张力, mN/m; Q—在压差 Δp 下,流体通过截面积为 A 的岩心的流 量,cm³/s;A一垂直于传输方向的岩心的截面积,cm²; Δp —流体通过岩心距离 L 的前后压力差, MPa; μ —流 体黏度,mPa•s;L-流体通过岩心的距离,cm;U-流 体流速, cm/s; µg一气相黏度, mPa•s; µw一液相黏度, mPa•s; K_{rg} 一气相相对渗透率; S_{g} 一含气饱和度; S_{gr} 一 束缚气饱和度;ng-Corey模型气相因子;Krw-液相 相对渗透率; K_{rw}^{0} 一液相端点相对渗透率; n_{w} —Corey 模型液相因子; ∇p_3 一填砂管第3段压力梯度,MPa/m; f_{g} 一泡沫质量(泡沫干度/气液比); U_{t} 一气液总流速, m/s; F_{drag} 一液膜拖拽力模型; e_{pdrag} 一液膜拖拽力因子; F_{mnew} 一涵盖 F_{drag} 模型的 F_{m} 函数; K_{rw} (S_{w}^{*})一在临界 含水饱和度处的液相相对渗透率; $K_{rr}^{0}(S_{w}^{*})$ 一在临界 含水饱和度处的气相相对渗透率; fmmob-仅考虑含水 饱和度因素的泡沫强度;K_{rg}(S^{*})一在临界含水饱和度

处的有泡沫时的气相相对渗透率; σ 一流变行为因子斜率; N_{ca0} 一参考毛细管数; ∇p_0 一对照压力梯度,MPa/m; ∇p_n 一任一压力梯度,MPa/m; f_{mcapn} 一任一毛细管数; ω 一液膜拖拽力因子斜率;B一拟合直线截距; $\Delta p_1 - \Delta p_5$ 一填砂管分段压力,MPa。

参考文献

- [1] 邹才能,朱如凯,董大忠,等.页岩油气科技进步、发展战略及政策建议[J].石油学报,2022,43(12):1675-1686.
 ZOU Caineng,ZHU Rukai,DONG Dazhong, et al. Scientific and technological progress, development strategy and policy suggestion regarding shale oil and gas[J]. Acta Petrolei Sinica,2022,43(12): 1675-1686.
- [2] FARAJZADEH R,EFTEKHARI A A,DAFNOMILIS G,et al. On the sustainability of CO₂ storage through CO₂-Enhanced oil recovery[J]. Applied Energy,2020,261:114467.
- [3] 中国二氧化碳地质封存环境风险研究组.中国二氧化碳地质封 存环境风险评估[M].北京:化学工业出版社,2018. China Carbon Dioxide Geological Storage Environmental Risk Research Group. Environmental risk evaluation of carbon dioxide geological storage in China[M]. Beijing;Chemical Industry Press,2018.
- [4] JIANG Kai, ASHWORTH P, ZHANG Shiyi, et al. China's carbon capture, utilization and storage (CCUS) policy: a critical review[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109601.
- [5] TAPIA J F D, LEE J Y, OOI R E H, et al. A review of optimization and decision-making models for the planning of CO₂ capture, utilization and storage (CCUS) systems [J]. Sustainable Production and Consumption, 2018, 13: 1-15.
- [6] 李瑶.助力碳达峰、碳中和,加强对二氧化碳的资源化利用[N]. 财经国家周刊,2021-04-26.

LI Yao. Assistanceing carbon peak, carbon neutralization, strengthing the utilization of carbon dioxide resources[N]. Economy and Nation Weekly,2021-04-26.

- [7] 袁士义,王强,李军诗,等. 注气提高采收率技术进展及前景展望
 [J]. 石油学报,2020,41(12):1623-1632.
 YUAN Shiyi, WANG Qiang, LI Junshi, et al. Technology progress and prospects of enhanced oil recovery by gas injection[J].
 Acta Petrolei Sinica,2020,41(12):1623-1632.
- [8] 陶士振,胡素云,王建,等.中国陆相致密油形成条件、富集规律 与资源潜力[J].石油学报,2023,44(8):1222-1239.
 TAO Shizhen,HU Suyun,WANG Jian, et al. Forming conditions, enrichment regularities and resource potentials of continental tight oil in China[J]. Acta Petrolei Sinica,2023,44(8):1222-1239.
- [9] 魏兵,钟梦颖,赵金洲,等. 微-纳米受限空间原油-天然气最小混相压力预测方法[J]. 石油学报,2022,43(11):1604-1613.
 WEI Bing, ZHONG Mengying, ZHAO Jinzhou, et al. Prediction method for the minimum miscibility pressure of crude oil and natural gas in micro-nano confined space[J]. Acta Petrolei Sinica,2022,43(11):1604-1613.
- [10] 李阳,赵清民,吕琦,等.中国陆相页岩油开发评价技术与实践 [J].石油勘探与开发,2022,49(5):955-964.

LI Yang, ZHAO Qingmin, LÜ Qi, et al. Evaluation technology and practice of continental shale oil development in China[J]. Petroleum Exploration and Development, 2022, 49(5): 955-964.

- [11] 马永生,蔡勋育,赵培荣,等.中国陆相页岩油地质特征与勘探实 践[J].地质学报,2022,96(1):155-171.
 MA Yongsheng, CAI Xunyu, ZHAO Peirong, et al. Geological characteristics and exploration practices of continental shale oil in China[J]. Acta Geologica Sinica,2022,96(1):155-171.
- [12] 贾承造,邹才能,李建忠,等.中国致密油评价标准、主要类型、基本特征及资源前景[J].石油学报,2012,33(3):343-350.
 JIA Chengzao,ZOU Caineng,LI Jianzhong, et al. Assessment criteria, main types, basic features and resource prospects of the tight oil in China[J]. Acta Petrolei Sinica,2012,33(3):343-350.
- [13] 赵文智,朱如凯,胡素云,等. 陆相富有机质页岩与泥岩的成藏差异 及其在页岩油评价中的意义[J]. 石油勘探与开发,2020,47(6): 1079-1089.

ZHAO Wenzhi,ZHU Rukai,HU Suyun, et al. Accumulation contribution differences between lacustrine organic-rich shales and mudstones and their significance in shale oil evaluation[J]. Petroleum Exploration and Development,2020,47(6):1079-1089.

- [14] 计秉玉,何应付.中国石化低渗透油藏 CO₂ 驱油实践与认识[J]. 油气藏评价与开发,2021,11(6):805-811.
 JI Bingyu, HE Yingfu. Practice and understanding about CO₂ flooding in low permeability oil reservoirs by Sinopec[J]. Reservoir Evaluation and Development,2021,11(6):805-811.
- [15] 袁士义,马德胜,李军诗,等.二氧化碳捕集、驱油与埋存产业化进展及前景展望[J].石油勘探与开发,2022,49(4):828-834.
 YUAN Shiyi,MA Desheng,LI Junshi, et al. Progress and prospects of carbon dioxide capture, EOR-utilization and storage industrialization [J]. Petroleum Exploration and Development, 2022,49(4):828-834.
- [16] VISHNUMOLAKALA N, ZHANG Jingjing, ISMAIL N B. A comprehensive review of enhanced oil recovery projects in Canada and recommendations for planning successful future EOR projects[C]// SPE Canada Heavy Oil Conference. Society of Petroleum Engineers, 2020; SPE-199951-MS.
- [17] 鹿腾,李兆敏,顾子涵,等. 超深层稠油降黏泡沫体系微观作用机 理及其矿场应用[J]. 石油学报,2023,44(8):1344-1355.
 LU Teng, LI Zhaomin, GU Zihan, et al. Microcosmic mechanism of viscosity-reducing foam system in ultra-deep heavy oil and its field application[J]. Acta Petrolei Sinica,2023,44(8):1344-1355.
- [18] FERNØ M A, GAUTEPLASS J, PANCHAROEN M, et al. Experimental study of foam generation, sweep efficiency, and flow in a fracture network[J]. SPE Journal, 2016, 21(4):1140-1150.
- [19] ROSSEN W R.FARAJZADEH R.HIRASAKI G J, et al. Potential and challenges of foam-assisted CO₂ sequestration[C]// SPE Improved Oil Recovery Conference. Society of Petroleum Engineers, 2022: SPE-209371-MS.
- [20] TANG Jinyu, VINCENT-BONNIEU S, ROSSEN W R. CT coreflood study of foam flow for enhanced oil recovery: the effect of oil type and saturation[J]. Energy, 2019, 188: 116022.
- [21] 李原,狄勤丰,王文昌,等. 基于核磁共振技术的非均质岩心中泡沫 动态稳定性评价方法及应用[J].力学学报,2021,53(8):2205-2213.

LI Yuan,DI Qinfeng,WANG Wenchang,et al. Evaluation method and application of foam dynamic stability in heterogeneous cores based on nuclear magnetic resonance technology[J]. Chinese Journal of Theoretical and Applied Mechanics,2021,53(8): 2205-2213.

- [22] TANG Jinyu, VINCENT-BONNIEU S, ROSSEN W R. Experimental investigation of the effect of oil on steady-state foam flow in porous media[J]. SPE Journal, 2019, 24(1):140-157.
- [23] MOHAMMADI S S, COOMBE D A, STEVENSON V M. Test of steam-foam process for mobility control in South Casper Creek reservoir[J]. Journal of Canadian Petroleum Technology, 1993, 32(10):49-54.
- [24] GONG Jiakun, FLORES MARTINEZ W, VINCENT-BONNIEU S, et al. Effect of superficial velocity on liquid injectivity in SAG foam EOR. Part 2:modelling[J]. Fuel, 2020, 279:118302.
- [25] GONG Jiakun, FLORES MARTINEZ W, VINCENT-BONNIEU S, et al. Effect of superficial velocity on liquid injectivity in SAG foam EOR. Part 1: experimental study[J]. Fuel, 2020, 278:118299.

(上接第 1121 页)

- [55] SUN Youhong, LIU Zhao, LI Qiang, et al. Controlling groundwater infiltration by gas flooding for oil shale in situ pyrolysis exploitation [J]. Journal of Petroleum Science and Engineering, 2019,179:444-454.
- [56] 朱国文,王小军,张金友,等. 松辽盆地陆相页岩油富集条件及勘 探开发有利区[J]. 石油学报,2023,44(1):110-124. ZHU Guowen, WANG Xiaojun, ZHANG Jinyou, et al. Enrichment conditions and favorable zones for exploration and development of continental shale oil in Songliao Basin[J]. Acta Petrolei Sinica,2023,44(1):110-124.
- [57] 陈强,郭威,李强,等. 油页岩原位开采井钻井工艺设计与施工
 [J]. 探矿工程(岩土钻掘工程),2017,44(7):9-14.
 CHEN Qiang, GUO Wei, LI Qiang, et al. Drilling design and construction of oil shale in-situ production well[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2017,44(7):9-14.
- [58] 王聪,陈晨,孙友宏,等.农安油页岩水力压裂模拟及实验研究
 [J].探矿工程(岩土钻掘工程),2015,42(11):7-11.
 WANG Cong, CHEN Chen, SUN Youhong, et al. Simulation of oil shale hydraulic fracturing in Nong'an and the experimental study[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2015,42(11):7-11.
- [59] 白文翔,孙友宏,周科,等. 油页岩原位裂解用注热管柱数值传热模 拟与试验研究[J]. 探矿工程(岩土钻掘工程),2018,45(4):1-5.
 BAI Wenxiang,SUN Youhong,ZHOU Ke, et al. Numerical simulation and field test study on heat injection pipe column of oil shale in-situ pyrolysis[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2018,45(4):1-5.
- [60] 白文翔,孙友宏,郭威,等.吉林农安油页岩地下原位裂解先导试 验工程[C]//第十九届全国探矿工程(岩土钻掘工程)学术交流 年会论文集.乌鲁木齐:中国地质学会探矿工程专业委员会, 2017.

BAI Wenxiang, SUN Youhong, GUO Wei, et al. Pilot test project

- [26] ROSSEN W R. Foams in enhanced oil recovery[M] // PRUD' HOMME R K, KHAN S A. Foams: theory, measurements and applications. New York: Routledge, 1996.
- [27] HIRASAKI G J, LAWSON J B. Mechanisms of foam flow in porous media:apparent viscosity in smooth capillaries[J]. Society of Petroleum Engineers Journal, 1985, 25(2):176-190.
- [28] FALLS A H, MUSTERS J J, RATULOWSKI J. The apparent viscosity of foams in homogeneous bead packs[J]. SPE Reservoir Engineering, 1989, 4(2):155-164.
- [29] CMG. STARS User's guide[M]. Computer Modelling group Ltd,2015.
- [30] CHENG L, REME A B, SHAN D, et al. Simulating foam processes at high and low foam qualities[C] // SPE/DOE Improved Oil Recovery Symposium. Tulsa, Oklahoma: Society of Petroleum Engineers, 2000; SPE-59287-MS.
- [31] KIM J S, DONG Y, ROSSEN W R. Steady-state flow behavior of CO₂ foam[J]. SPE Journal, 2005, 10(4):405-415.
 - (收稿日期 2023-12-06 改回日期 2024-02-29 编辑 王培玺)

of oil shale in-situ pyrolysis in Nong'an of Jilin[C] // Exploration Engineering (Rock & Soil Drilling and Tunneling). 2017.

- [61] ZHAO Shuai, SUN Youhong, WANG Haoran, et al. Modeling and field-testing of fracturing fluid back-flow after acid fracturing in unconventional reservoirs[J]. Journal of Petroleum Science and Engineering, 2019, 176:494-501.
- [62] GUO Wei, ZHANG Xu, SUN Youhong, et al. Migration mechanism of pyrolysis oil during oil shale in situ pyrolysis exploitation[J]. Energy, 2023, 285:128769.
- [63] 卢梦蝶,李贤庆,米敬奎,等. 典型低熟页岩原位加热产油气特征 模拟[J]. 石油学报,2023,44(5):765-777.
 LU Mengdie,LI Xianqing,MI Jingkui,et al. Simulation of characteristics of oil/gas produced by in-situ heating of typical lowmature shale[J]. Acta Petrolei Sinica,2023,44(5):765-777.
- [64] 关文龙,蒋有伟,郭二鹏,等."双碳"目标背景下的稠油开发对策
 [J].石油学报,2023,44(5):826-840.
 GUAN Wenlong,JIANG Youwei,GUO Erpeng, et al. Heavy oil development strategy under the "carbon peaking and carbon neutrality" target[J]. Acta Petrolei Sinica,2023,44(5):826-840.
- [65] 贾承造.中国石油工业上游前景与未来理论技术五大挑战[J]. 石油学报,2024,45(1):1-14.
 JIA Chengzao. Prospects and five future theoretical and technical challenges of the upstream petroleum industry in China[J]. Acta Petrolei Sinica,2024,45(1):1-14.
- [66] LIU Zhao, SUN Youhong, GUO Wei, et al. Reservoir-scale study of oil shale hydration swelling and thermal expansion after hydraulic fracturing[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107619.
- [67] GUO Wei, SHUI Haoche, LIU Zhao, et al. Reliability analysis of elastic graphite packer in heat injection well during oil shale in-situ conversion[J]. Advances in Geo-Energy Research, 2023, 7(1):28-38.

(收稿日期 2023-11-07 改回日期 2024-05-02 编辑 王培玺)