文章编号: 0253-2697(2024)07-1130-11 DOI:10.7623/syxb202407008

管土耦合作用下超临界 CO2 管道裂纹动态扩展模拟方法

甄 莹^{1,2} 曹宇光^{1,2} 张振永³ 白 芳³ 钮瑞艳^{1,2}

(1.中国石油大学(华东)储运与建筑工程学院 山东青岛 266580; 2.中国石油大学(华东)山东省油气储运安全重点实验室 山东青岛 266580;3.中国石油管道局工程有限公司 河北廊坊 065000)

摘要:为解决现有流固耦合模型建模难度高、计算效率低而无法广泛用于 CO2 管道裂纹扩展预测的问题,提出了一种基于减压模型 的管土耦合作用下 CO2 管道裂纹动态扩展模拟方法。在该方法中管道断裂与流体减压间复杂的流固耦合作用由基于爆破实验及 模拟所得压力数据提出的 CO2 三维减压模型结合加载子程序代替实现,大变形下管土耦合关系采用光滑粒子流方法描述。为验证 所构建数值模拟方法的可靠性,将其用于再现管道爆破实验,同时基于该方法对半回填、无回填及完全回填状态下 CO2 管道韧性断 裂行为进行了对比研究。结果表明,所提出的模拟方法较为可靠,两种工况下裂纹扩展速度模拟值与实验值误差分别为 21.6%与 7.6%,证明所构建的减压模型可有效描述裂纹扩展过程中管内压力时空演化规律,同时可避免对复杂流固耦合问题的求解,为后 续超临界 CO2 管道断裂行为参数化研究及止裂预测模型的构建奠定了基础。研究结果表明,土壤回填效应对管道裂纹扩展长度、 速度、管道整体变形等断裂行为影响显著,相较于无回填管道,完全回填管道裂纹扩展速度下降了 19 m/s,且管道变形受到明显限 制,有利于裂纹止裂。

关键词:超临界 CO₂ 管道;管土耦合;止裂预测;减压模型;光滑粒子流体方法 中图分类号:TE88 **文献标识码:** A

The numerical simulation method for dynamic crack propagation of supercritical CO₂ pipeline under the pipe-soil coupling

Zhen Ying^{1,2} Cao Yuguang^{1,2} Zhang Zhenyong³ Bai Fang³ Niu Ruiyan^{1,2}

(1. College of Pipeline and Civil Engineering, China University of Petroleum, Shandong Qingdao 266580, China;

2. Province Key Laboratory of Safety of Oil & Gas Storage and Transportation, China University of Petroleum,

Shandong Qingdao 266580, China; 3. China Petroleum Pipeline Engineering Corporation, Hebei Langfang 065000, China)

Abstract: To solve the problem that the existing fluid-solid coupling structure model cannot be widely applied for predicting crack propagation in CO₂ pipelines due to its high difficulty in modeling and low computational efficiency, the paper proposes a simulation method for the dynamic crack propagation of supercritical CO₂ pipeline based on a decompression model. In this method, the complex fluid-structure interaction between pipeline fracture and fluid release is achieved by a three-dimensional CO₂ pressure decompression model combined with loading subroutines, which is first proposed based on pipeline pressure data obtained from full-scale burst experiments and numerical simulations. The coupling relationship between pipeline and soil under large deformation is described using the smoothed particle hydrodynamics (SPH) method. To verify the reliability of the proposed numerical simulation method, it is used to reproduce the pipeline burst tests; based on this method, a comparative study is conducted on the ductile fracture behavior of CO_2 pipelines without backfill, with half and full backfill. The results indicate that the proposed method is reliable. The error between the simulated and experimental values of crack propagation speed under two working conditions is 21.6% and 7.6%, respectively, demonstrating that the established decompression model can effectively describe the space-time evolution of the pressure in the CO₂ pipeline during crack propagation and can avoid solving complex fluid structure coupling problems, thus laying the foundation for the subsequent parameterization study of fracture behavior and the construction of crack arrest prediction models for supercritical CO₂ pipelines. The research result also shows that soil backfilling has a significant influence on crack propagation length, velocity and whole deformation of pipelines. Compared with pipelines without backfill, the crack velocity of fully backfilled pipelines is decreased by 19 m/s, and the pipeline deformation is significantly limited, which is beneficial for crack arrest.

Key words: supercritical CO₂ pipeline; pipe-soil coupling; crack arrest prediction; pressure decompression model; SPH method

基金项目:国家自然科学基金项目(No. 12202502, No. 12272412)、山东省自然科学基金项目(ZR2022QE039, ZR2020ME093)、山东省博士后创新项目(SDCX-ZG-202203101)和中央高校基本科研业务费专项资金项目(23CX03002A, 24CX06008A)资助。

第一作者:甄 莹,女,1991年9月生,2021年获中国石油大学(华东)博士学位,现为中国石油大学(华东)储运与建筑工程学院特任副教授,主要从 事管道断裂控制、管材断裂韧性表征等研究。Email:1271297573@qq.com

通信作者:曹宇光,男,1979年2月生,2006年获日本富山县立大学博士学位,现为中国石油大学(华东)教授、博士生导师,主要从事管道完整性、海洋工程结构设计、断裂失效分析等研究。Email:cao_yuguang@qq.com

Cite : ZHEN Ying, CAO Yuguang, ZHANG Zhenyong, BAI Fang, NIU Ruiyan. The numerical simulation method for dynamic crack propagation of supercritical CO₂ pipeline under the pipe-soil coupling[J]. Acta Petrolei Sinica, 2024, 45(7):1130-1140.

碳中和目标下,超临界态 CO₂ 管道输送已成为碳 捕集利用与封存(CCUS)技术发展的必然趋势^[1-7]。 该输送模式下管道裂纹易发生快速长程扩展,因此,开 展止裂控制研究迫在眉睫。基于夏比冲击韧性的 Battelle 双曲线模型(BTCM)是具代表性且目前工业 化程度较高的天然气管道止裂控制技术^[8-9]。为验证 该模型对超临界 CO₂ 管道的适用性,在美国、欧洲等 地区共计开展了 11 次全尺寸爆破实验的结果表明,该 模型严重低估了管道止裂所需韧性^[10-13],且难以通过 当前有限的爆破实验数据确定并引入修正系数使其满 足超临界 CO₂ 管道止裂设计需求^[1+16],而且大规模开 展爆破实验也并不现实。

DNVGL-RP-F104 标准^[17]明确指出,需进一步开 发经验证且稳健的数值方法用于超临界 CO₂ 管道韧 性裂纹扩展的预测。研究人员对此开展了大量工作: Talemi 等^[18] 通过结合一维计算流体动力学模型与拓 展有限元(XFEM)提出了一种流固耦合模型,但该模 型仅适用于 CO。管道脆性断裂过程模拟。Aursand 等^[19]和 Nordhagen 等^[20]开发了一种相对完善的流固 耦合算法,该算法采用均相平衡流模型与 Span-Wagner 状态方程计算 CO2 流体流动及热力学特性,管道 由壳单元离散化,其变形及断裂行为由应变率相关的 J2 塑性模型和 Cockcroft-Latham 准则表示。Keim 等^[21-22]提出的 CO₂ 管道断裂模拟方法采用 CEL 方法 建模、改进的 Bai-Wierzbicki 模型描述管道变形及韧 性断裂、3D 欧拉方程计算 CO2 减压行为。上述两种 方法虽已借助管道爆破实验验证了其可靠性,但流体、 固体及断裂间复杂的耦合计算导致其建模难度大、内 存占比高、计算周期长,难以广泛开展,从而对 CO2 管 道裂纹扩展行为进行系统分析。天然气管道动态断裂 模拟常采用基于爆破实验的半经验方法,此类方法使 用气体减压模型结合损伤断裂模拟技术简化气体减压 与结构变形间复杂的流固耦合作用,可在保证计算精 度的同时显著提高计算速度[23-26]。但现有减压模型均 是针对天然气管道提出的,用于描述开裂 CO2 管道载 荷时空变化的减压模型尚未见报道。

CO₂ 管道不可避免要进行埋地敷设,若要准确分 析埋地 CO₂ 管道动态断裂行为,则需充分考虑大变形 管道与周围土体的双向耦合作用。目前,土弹簧、弹性 地基梁以及非线性接触模型等方法常用于土体作用下 管道力学模拟分析,也有学者采用等效附加压力^[27]或 增加管材密度^[28]的方法来近似考虑土壤回填效应,但 上述方法用于大变形模拟分析时常存在不收敛或精度 差的问题。Fredj等^[29-30]首次将光滑粒子流体动力学 法(SPH)与传统有限元法耦合,构建了管一土相互作 用模型,对大位移土体下管道力学行为进行分析,解决 了大变形问题所带来的网格缠绕、畸变等模拟难题,可 为本文模拟方法的构建提供参考。

基于上述背景,笔者首先归纳分析现有爆破实验 及数值分析所得 CO₂ 管道断裂过程中裂尖处及裂尖 前后压力时空分布数据,提出一种用于描述 CO₂ 分布 规律的减压模型。将该模型作为载荷条件写入加载子 程序,结合管道损伤断裂仿真方法,实现对流固耦合问 题的简化求解。同时,采用 SPH 方法描述大变形下管 土耦合关系,由此形成管土耦合作用下超临界 CO₂ 管 道裂纹动态扩展数值仿真方法。借助该方法对已开展 的两种不同工况管道爆破实验进行模拟,从管道变形、 裂纹扩展长度及裂纹扩展速度等方面对比实验与模拟 数据,以此验证模型可靠性。在此基础上,基于该模型 对半回填、无回填及全回填状态下超临界 CO₂ 管道断 裂过程进行模拟,系统对比回填效应对管道裂纹扩展长 度、速度及整体变形等断裂行为的影响,以期为后续超 临界 CO₂ 管道设计及止裂控制方法的构建提供指导。

1 CO₂ 三维减压模型

使用减压模型的管道裂纹扩展数值仿真一般将管 道内壁以裂纹尖端为分界线,分为裂尖前和裂尖后两 个加载区域,裂尖压力为联系其前后压力分布的纽带。 为构建 CO₂ 管道减压模型,首先对其裂尖处压力随裂 纹扩展演化规律进行研究。

1.1 裂尖压力演化规律

针对超临界 CO₂ 减压行为开展的相关实验测试 与理论研究表明^[31],不同于天然气平滑的减压曲线, 其减压曲线存在一个范围较广的平台(对应压力为介 质饱和压力),该减压平台的存在使管内压力响应明显 区别于天然气管道。CO₂ PIPETRANS 项目^[19]开展 的第1次爆破实验发现,CO₂ 管道在裂纹扩展 0.3 m 后裂尖压力即由初始压力下降至饱和压力,且在该压 力作用下持续扩展 4 m;该项目开展的第 2 次实验也 得到类似结论。COOLTRANS 项目^[11,14]的第 1 次、 第 2 次和第 3 次爆破实验监测所得的管道裂尖压力分 别保持在较饱和压力低 0.4~0.8 MPa、0.2~0.8 MPa 与 0.6~0.8 MPa 的范围内,管道断裂均发生于压力 降至饱和压力之后。CO₂ SAFE-ARREST 项目^[13]开 展的全尺寸爆破实验表明,裂纹扩展过程中管道裂尖 压力始终以略低于 CO₂ 饱和压力的压力保持恒定。 其他爆破实验或数值模拟也得到了类似结论。由此可 知,CO₂ 管道裂纹扩展过程中,受 CO₂ 热力学减压特 性的影响,其裂尖压力基本保持定值,数值略低于 CO₂ 饱和压力。

1.2 裂尖前压力分布规律

根据 COOLTRANS 项目第 1 次爆破实验中管道各

处由实验开始至裂纹扩展至此处时整个阶段的压力衰减历程^[14],通过提取相关数据,分别得到实验东侧管段裂纹扩展长度 *a* 分别为 19.4 m、24.0 m 与 29.8 m 时以及西侧管段裂纹扩展长度分别为 18.9 m、24.2 m 与 29.9 m 时裂尖处及裂尖前各处压力分布数据(图 1)。

从图 1 可以看出,管道裂纹扩展过程中,其裂尖处 压力数值较为恒定(约为 7.2 MPa),略小于饱和压力 8.0 MPa,与前文所得规律一致。与天然气管道不同,裂 尖前压力存在由初始压力至裂尖压力的衰减,且裂纹扩 展过程中其衰减规律基本一致,可近似视为线性衰减。

图 1 COOLTRANS-1 测试压力采集数据 Fig. 1 Pipe pressure data of COOLTRANS-1 test

1.3 裂尖后压力分布规律

已开展的 CO₂ 管道爆破实验对于裂尖后压力分 布一般仅采集 2 或 3 个数据点,难以支撑压力分布函 数的构建,一些数值模拟结果也可为减压模型的建立 提供借鉴。Aursand 等^[19]将其模拟所得压力数据与 CO₂ 管道爆破实验结果进行充分对比后的结果表明, 其对压力衰减描述较为准确,实验时间为 20.0 ms 时 压力沿管道轴向的分布规律不同于天然气管道,其裂 尖前后压力在 5~6 倍管径处仍未衰减至 0。Nordhagen 等^[20]发现,相较于天然气,CO₂ 管道裂纹襟翼 上的压力数值更高、分布区域更广。Keim 等^[22]借助 其开发的流固耦合模型,通过总结纯/含杂质 CO₂ 管道 裂纹扩展过程中管内压力分布特征,将管道沿轴向划分 为 3 个区域:裂尖前压力整体缓慢衰减区、裂尖附近恒 定饱和压力区和裂尖后压力迅速衰减区,该结论与前文 总结所得裂尖处及裂尖前压力分布演化规律一致。

1.4 CO2 减压模型构建

借助 Keim 等^[22]的研究结论,将管道沿轴向划分为3个区域:裂尖前压力缓慢衰减模型由图1中爆破

实验数据拟合得到:

$$p_{\rm f} = 0.034 \, 4z/D + p_{\rm s} \tag{1}$$

裂尖处压力保守取为 CO₂ 饱和压力;裂尖后压力 迅速衰减模型由根据文献[19]得到:

$$p_{\rm b} = p_{\rm s} \exp(-0.225 z/D)$$
 (2)

同时考虑该区域压力沿环向的衰减规律,由此建 立管道断裂过程中 CO₂ 减压模型(图 2)。

Fig. 2 Schematic diagram of CO₂ pipeline depressurization model

为了验证所提出减压模型用于 CO₂ 管道裂纹动态 扩展模拟的可靠性,基于该模型结合作者之期提出的加 载方法,对挪威船级社(DNV)与德国劳氏船级社(GL)主 导的联合工业项目(CO₂ PIPETRANS)中的 CO₂ 管道 爆破实验进行模拟再现^[19]。

2.1 管道爆破实验选取

CO₂ PIPETRANS项目共开展了 2 次爆破实验^[19], 实验中使用了 4 种不同类型和厚度的钢管,每种钢管 长度约为 5.5 m。实验管道(W1 和 E1)使用砂土回 填,高度为管道直径的 1/2,宽度约为 0.5 m,通过线性 聚能切割器在 W1 和 E1 管段引入总长度为 800 mm 的初始裂纹,在内压的驱动下,裂纹由起裂管向两侧试 验管扩展。管道布置如图 3 所示。

该实验目的是为评估 BTCM 对 CO₂ 管道止裂预 测的适用性,因此两次实验布置、管道尺寸及管材性能 基本相同,仅改变 CO₂ 压力、温度等介质参数,以使实 验分别得到裂纹持续扩展与最终止裂的结果。两次实 验中 CO₂ 工况参数见表 1。

Fig. 3 Schematic diagram of pipe layout

表 1	两实验中	CO2 工ど	兄参数□15□
-----	------	--------	---------

Table 1 CO₂ operating conditions parameters for the two tests

试验	初始压力/MPa	初始温度/℃	饱和压力/MPa
实验 1	8.85	30.00	6.40
实验 2	9.15	2.25	3.86

从表 1 可以看出,两次试验中 CO₂ 均处于密相, 因密相与超临界态 CO₂ 热力学减压行为接近,因此上 述试验可用于本文模拟方法的可靠性验证。首先选取 实验 1 中 W1 管段进行模拟。

2.2 管道材料模型

借助 Gurson-Tvergaard-Needleman(GTN)模型 基于单元删除实现管道裂纹扩展的模拟。该模型是典型的细观损伤模型,可将材料的宏观行为与微观组织 结构相联系。使用该模型时,材料性能的定义分为两 部分:①弹塑性材料的定义;②多孔材料的定义。

实验 1 中 W1 段管材屈服强度 σ_y 为 445 MPa、极 限抗拉强度 σ_u 为 570 MPa,室温下夏比冲功为 128 J。 实际夏比冲击实验中使用的试样为 1/2 厚度试样,128 J 为转化为 80 mm² 等效试样的测试结果,则 1/2 厚度试 样夏比冲击功为 64 J。文献[19]中该管段完整的应 力一应变曲线如图 4 所示。多孔材料的定义由基于夏 比冲击实验数值模拟的试算法标定。

首先,基于 Abaqus 软件建立三维有限元模型,所 建模型包括冲头、支座和试件。由于该管材采用 1/2 厚度试样进行实验,因此试样横截面尺寸为 8.0 mm× 5.0 mm,不考虑摆锤刀刃和支座的变形,将其简化为解 析刚体。试样主体选用 C3D8R 单元进行网格划分,为保 证模拟精度,对试件缺口及刀刃撞击区进行网格细化,最 小网格尺寸设为 0.2 mm,网格划分情况如图 5 所示。

将两支座完全固定,摆锤刀刃施加位移控制的边 界条件。依照试验标准,设置竖直方向初始速度为 5234 mm/s,试样与支座和摆锤刀刃之间分别设置接 触作用。将图4中管材应力一应变曲线赋予模型,同 时假设一组GTN参数,选用Abaqus软件中的显式动 力分析模块 Explicit 进行分析,同时考虑裂纹扩展过 程中的大变形,计算结束后提取载荷位移曲线并计算 夏比冲击功。由于文献[19]未提供管材夏比冲击实验 曲线,因此仅以夏比冲击功为目标对GTN参数进行 标定。不断调整模型中GTN参数,当模拟值与实验 值误差小于1J时停止试算。计算得到试样夏比冲击 功为63.99J,所得试样载荷一位移曲线如图6所示。 其中,GTN参数取值见表2。

表 2 W1 管段材料 GTN 模型损伤参数

Table 2 Damage parameters of GTN model for W1 pipe

参数	数值	参数	数值
q_1	1.5	$f_{\rm N}$	0.0008
q_2	1	f_0	0.000325
q_3	2.25	fc	0.001
ε _N	0.3	$f_{\rm F}$	0.1
$S_{ m N}$	0.1		

2.3 管道有限元模型

实验1中W1管段直径为403.62mm,壁厚为 6.22mm,总长度为5485mm。考虑管道在轴向和径 向方向结构和载荷的对称性,借助Hypermesh软件建 立1/4管道模型。由于GTN模型具有严重的网格依 赖性,如果将管道全局均采用符合GTN模型要求的 单元尺寸,则会产生巨大的单元数量,为模型计算及后 处理带来严重的影响。为解决该问题,采用线性减缩 积分单元C3D8R对模型进行网格划分,损伤断裂过程区 管壁厚度方向划分6层单元,单元高度设为0.25mm,单 元轴向长度设为 0.5 mm^[23],采用过渡网格技术对管 道网格进行划分实现单元密度沿轴向及环向的逐渐递 减,以此减少有限元模型的节点数,缩短计算时间。将 图 4 中管材应力一应变曲线与表 2 中确定的 GTN 参 数均赋予管道有限元模型。

2.4 土壤回填模型

实验1中W1管段放置于激光整平的压缩板 材(MAT1)上,并以散砂(MAT2)回填,回填高度为管 道直径的1/2,宽度约为0.5m(图7)。

笔者选用 SPH 方法来表示土壤对管道的回填作 用。SPH 是一种无网格拉格朗日方法,非常适合描述 大变形下的颗粒材料力学行为。该方法已在 Abaqus 中实现。选用 Mohr-Coulomb 模型描述土壤材料行 为,屈服面可表示为:

$$\tau_{\max} = C + \sigma_n \cdot \tan\phi \tag{3}$$

如果拉伸应力超过 σ_{max} ,则发生可逆体积空隙。 对于大于 0°的摩擦角,Mohr-Coulomb 屈服面意味着 拉伸压力极限,可表示为:

$$\sigma_{\rm max} = C/\tan\phi \tag{4}$$

回填材料塑性应变的定义方式与管道的弹塑性材 料模型相同。两种回填材料 Mohr-Coulomb 模型参数 见表 3。

表 3	W1 管段回填土材料参数 ^[15]

|--|

材 料	密度/ (kg/m ³)	G∕ GPa	υ	¢∕ rad	C/ kPa	ψ∕ rad
MAT1	1 700	8.0	0. 20	0. 61	0	0. 61
MAT2	2 000	18.5	0. 35	0. 61	0. 5	0. 61

根据图 3 及图 7,在管道有限元模型的基础上引 入回填材料模型并划分网格。通过更改回填材料单元 属性将土壤网格直接转化为 SPH 粒子。为了保证计 算的准确性和效率,有必要选择合适的 SPH 粒子密 度。Bassindale 等^[32]研究发现,当 SPH 粒子尺寸为 25~75 mm 时,对裂纹扩展速度的影响可忽略。笔者 试算发现,当沿管道 1/4 圆周设置 6 个 SPH 粒子时, 模型可得到收敛的结果,此时粒子尺寸约为52.8mm。 在管道与回填材料之间设置通用接触描述管土接触属 性,定义二者间摩擦系数为0.4。

2.5 模型加载

考虑模型的对称性,为1/4模型靠近初始裂纹一 端管道及十壤均施加 Z 方向的对称约束,管道另一端 施加等效拉力模拟端盖效应,沿管道及土壤轴向施加 X方向的对称约束,并固定土壤底部各方向位移及转 角。管道内壁借助 Zhen 等^[33]提出的纳入裂尖位置实 时预测的迭代加载法进行载荷施加,基于 Fortran 语 言编写 VDLOAD 子程序,将其分为裂尖前与裂尖后 两个区域,分别以式(1)一式(2)所示的 CO。减压模型

对管道加载,以模拟裂纹扩展过程中管壁张开后因管 内介质溢出压力逐渐下降的过程。子程序中同时引入 裂尖位置随时间变化规律,以此实现管道边界条件及 管内压力随时间及空间的实时演化。管土有限元模型 及边界条件设置如图8所示。

数值模拟方法可靠性验证 3

由模拟结果与实验所得管道裂纹扩展形貌对 比(图 9)可知,所构建的模拟方法模拟所得 CO。管道 断裂形貌与爆破实验结果具有较好的一致性。在实验 中高 CO2 减压平台作用下,管道变形明显,轴向发生 弯曲变形,管道中心对称处张开程度达到 180°,管壁 张开的襟翼存在显著的连续波浪状变形,且塑性应变 值较大,主要集中于裂纹扩展路径两侧。

注:SBC_z、SBC_x分别表示 Z方向与X方向对称约束,EBC表示固定约束。 图 8 实验 1 中 W1 管段有限元模型及边界条件 Fig. 8 Finite element model and boundary conditions of W1 pipe in Test 1

(b) 实验结果^[19]

图 9 实验 1 中 W1 管段模拟与实验所得断裂形貌

Fig. 9 Simulated and experimental fracture morphology of pipeline of W1 pipe in Test 1

模拟所得裂纹扩展长度及裂纹扩展速度曲线如图 10 所示。从图 10(a)可以看出,裂纹起裂阶段,裂纹扩展长度曲线上升较为平缓,随裂纹扩展,该曲线近似以直线形式上升。由图 10(b)可以看出,当裂纹进

入稳定扩展阶段后,裂纹扩展速度基本保持定值。由于 此时裂尖压力始终为气体饱和压力,说明裂纹扩展驱动 力基本不变,因此,裂纹会以该速度持续扩展,无法实现 自身止裂,与实验中最终裂纹未止裂结果一致。

型有所提升,综合模拟所得管道断裂形貌等结果,可以 初步认为所构建的 CO₂ 管道裂纹动态扩展模拟技术 较为可靠。

为进一步说明所构建模拟方法的准确性,对同一项目开展的第2次管道爆破实验中W1管段裂纹扩展 过程进行模拟。两次实验布置、管道尺寸及管材性能 基本相同,因此不再进行管道建模及材料参数标定,仅 在加载子程序中将CO2饱和压力替换为3.86MPa。 将实验与模拟所得裂纹扩展速度对比可见,二者数据 较为吻合[图11(b)]。实验与本文模拟所得实验2中 W1管段平均裂纹扩展速度分别为118m/s和109m/s,

Fig. 11 Comparison of experimental and simulation results of crack velocity of pipe W1

误差仅为 7.6%, 而文献[19]模拟所得裂纹扩展速度 较试验值偏大 50~70 m/s, 进一步说明了本文模拟方 法的可靠性。

4 不同回填管道裂纹扩展行为对比

通过所构建的模型对半回填、无回填与完全回填 CO₂管道断裂行为差异进行研究。模型尺寸、材料参 数与载荷施加均与前文试验1中W1管段一致,无回 填模型中将土壤部分去除,在管道底部设置一刚体以 避免管道过度变形^[34];完全回填管道顶部回填土高度 设为1倍管径。三者模拟所得裂纹扩展长度与裂纹扩 展速度对比如图12所示。从图12(a)可以看出,不同 回填管道裂纹扩展长度演化趋势基本一致,斜率不同; 图12(b)中裂纹扩展速度也得到类似结论。无回填管 道、半回填管道、完全回填管道裂纹稳定扩展阶段平均 速度分别为 209 m/s、225 m/s 与 192 m/s,半回填管道 裂纹扩展速度最大,完全回填管道裂纹扩展速度最小。 无回填及完全回填天然气管道裂纹扩展速度可用经典 BTCM 中的裂纹扩展速度预测公式:

$$V_{\rm f} = C_{\rm b} \, \frac{\sigma_{\rm f}}{\sqrt{R_{\rm f}}} \left[\frac{p_{\rm b}}{p_{\rm a}} - 1 \right]^{1/6} \tag{5}$$

$$p_{\rm a} = \frac{4}{3.33\pi} \frac{t}{D} \sigma_{\rm f} \arccos\left(\exp{-\frac{1\,000\pi ER_{\rm f}}{24\sqrt{Dt/2}\,\sigma_{\rm f}^2}}\right) \quad (6)$$

将研究对象 W1 管段规格参数分别代入式(5)--式(6)计算得到,当该管道在完全回填及无回填下用于 输送天然气时裂纹稳定扩展速度分别为 117.55 m/s 与 162.22 m/s。与超临界 CO2 管道裂纹扩展模型计 算结果对比可见,两种回填情况下,超临界 CO2 管道 裂纹扩展速度均大于天然气管道,且土壤回填的影响 对于天然气管道更为显著。

图 12 不同回填管道裂纹扩展长度与速度对比

Fig. 12 Comparison of crack propagation length and velocity for pipelines under different backfill mode

对不同回填管道原始裂纹尖端张开位移演化历程 进行对比(图 13)可以看出,当裂纹扩展长度小于 3.5D 时,半回填管道与无回填管道原始裂纹尖端张开程度 及趋势基本一致。这是由于半回填管道顶部无土壤限 制,此时张开的管壁与周围回填土未接触,其约束状态 与自由管道一致。随裂纹继续扩展,半回填管道因管 壁与回填土接触而变形受到限制,原始裂尖张开位移 呈现下降趋势;而无回填管道继续自由变形,其原始裂 尖张开位移继续增加,当裂纹扩展到一定程度时,受减 压效应影响,管道原始裂尖附近裂纹扩展驱动力逐渐 下降至 0,管壁变形不变,张开位移则近似保持持平。 对于完全回填管道,由于受周围回填土的约束作用,其 原始裂尖张开位移始终小于无回填与半回填管道;当 裂纹扩展至 2 倍直径后,原始裂尖处在内部裂纹扩展

驱动力和外部土壤作用之间保持平衡,其变形保持不变,因此其张开位移曲线保持水平。

进一步对比不同加载时刻半回填与无回填管道变 形情况(图 14)可知,裂纹扩展初期,不同回填管道塑 性应变均集中于裂纹尖端附近;随裂纹持续扩展,塑性 应变由裂尖局部聚集逐渐扩展至裂尖后张开的襟翼 上,且沿管道环向分布范围逐渐变广,襟翼显示了移动 的裂纹尖端后连续的波浪状变形。对比 0.001 s 时两 管道变形可知,半回填与无回填管道变形在裂纹扩展 初期基本相同,而完全回填管道在土壤约束作用下期裂 纹张开程度较两者偏小。随裂纹继续扩展至 0.006 s,无 回填管道裂纹口附近管壁变形不受限制,在内力作用 下继续向外张开,而管道底部则与刚体发生接触后变 形受限而被逐渐展平;半回填管道管壁与侧向土壤已 发生接触,其变形受到土壤限制,管道底部仍保持圆弧 状,管道同时发生轻微轴向弯曲;而完全回填管道受土 壤约束效应明显,裂纹口附近管壁无法沿横向扩展,管

道整体变形呈"U"形。裂纹扩展至 0.012 s,不同回填 管道变形差距较大,无回填管道变形最为明显,裂尖襟 翼波浪状变形分布最密集,管道底部被完全展平;半回 填管道裂纹扩展长度明显大于无回填管道,裂纹口附 近管壁沿横向变形较 0.001 s 时愈发明显:完全回填管 道变形形态并未随持续加载而发生明显变化,其张开 的裂纹口呈现为细长条形,整体变形仍呈"U"形。由 此可知,土壤回填对管道变形影响极大。完全回填管 道其周围土壤消耗掉大量管道动能,使得用干管道裂 纹扩展及塑性变形的能量减少,因此其裂纹扩展长度 最小;在半回填工况下,土壤对管道的变形限制作用较 小,相应吸收的能量也较少,其塑性变形也不似无回填 管道明显,使得更多能量用于管道裂纹的扩展,因此其 裂纹扩展长度与速度都较大;对于无回填管道,尽管其 周围无土壤作用,但其塑性变形最为显著。这可能是 由于其多余的塑性变形消耗的能量大于半回填管道土 壤吸收的能量,使其裂纹扩展速度较半回填管道偏小。

图 14 不同回填管道变形对比

5 结 论

(1)根据 CO₂ 管道裂纹扩展过程中压力沿轴向 分布特征将管道划分为 3 个区域:①裂尖处压力长时 间内保持恒定,数值略低于 CO₂ 饱和压力;②裂尖前 压力呈近线性缓慢衰减,由远端初始压力衰减至裂尖 压力;③裂尖后压力呈指数型迅速衰减趋势,且减压区 范围明显大于天然气管道。

(2) 基于管内压力分布特征首次提出的 CO₂ 减 压模型可有效描述管道裂纹扩展过程中 CO₂ 时空分 布规律,选用的 SPH 方法可有效表征大变形条件下断 裂管道与周围土壤间的相互作用;基于上述减压模型 与 SPH 方法形成的管土耦合作用下 CO₂ 管道裂纹动 态扩展模拟方法模拟所得管道变形、裂纹扩展速度等 数据与实验结果吻合良好,模拟精度较现有模型有所 提升,且避免了对流固耦合问题的求解,有效提高了计 算效率。

(3) 土壤回填效应对管道裂纹扩展长度、速度、管 道整体变形等断裂行为影响显著。相较于无回填管 道,完全回填管道裂纹扩展速度下降 19 m/s,且管道 变形受到明显限制,建议对 CO₂ 管道采用完全回填的 敷设方式,以降低其一旦发生断裂事故后的裂纹扩展 速度。

符号注释:a-裂纹扩展长度,m;p_f-开裂管道裂 尖前压力, MPa; p_a一止裂压力, MPa; p_b一开裂管道裂 尖后压力, MPa; z-当前位置距裂尖的轴向距离, mm; D—管道直径, mm; t—管道壁厚, mm; p_s —CO₂ 饱和压力, MPa; p_0 一管道初始压力, MPa; σ_v 一屈服强 度, MPa; σ_0 一极限抗拉强度, MPa; f_0 一初始孔洞体积 分数; f_N一可形核二相粒子体积分数; f_c一临界聚合 孔洞体积分数; $f_{\rm F}$ 一断裂孔洞体积分数; q_1 、 q_2 、 q_3 一材 料损伤参数; ϵ_N 、 S_N 一平均等效塑性应变及其标准差; τ_{max} 一任何平面上的最大剪应力, MPa; σ_n 一平面上法 向应力, MPa;σ_{max}一任何平面上的最大法向应力, MPa; C一内聚力, MPa; ϕ 一摩擦角, (°); G一剪切模量, MPa; v—泊松比; ϕ —膨胀角, (°); V_f —裂纹扩展速度, m/s;C_b一回填常数,对于土壤回填、海底管道、无回填 等不同情况, C_b分别取值为 0.275、0.235、0.3795; σ_i 一流变应力, MPa; R_i 一材料断裂阻力, J/mm²; E一 弹性模量, MPa; T一时间, s。

参考文献

- [1] EL-KADY A H, AMIN T, KHAN F, et al. Analysis of CO₂ pipeline regulations from a safety perspective for offshore carbon capture,utilization, and storage (CCUS)[J]. Journal of Cleaner Production, 2024, 439:140734.
- [2] 杨勇.中国碳捕集、驱油与封存技术进展及发展方向[J].石油学报,2024,45(1):325-338.

YANG Yong. Technology progress and development direction of carbon capture.oil-flooding and storage in China[J]. Acta Petrolei Sinica.2024.45(1):325-338.

[3] 贾承造.中国石油工业上游前景与未来理论技术五大挑战[J]. 石油学报,2024,45(1):1-14.

JIA Chengzao. Prospects and five future theoretical and technical challenges of the upstream petroleum industry in China[J]. Acta Petrolei Sinica,2024,45(1):1-14.

- [4] CHEN Lei, HU Yanwei, YANG Kai, et al. Fracture process characteristic study during fracture propagation of a CO₂ transport network distribution pipeline[J]. Energy, 2023, 283:129060.
- [5] 苏现波,王乾,于世耀,等.基于低负碳减排的深部煤系气一体化 开发技术路径[J].石油学报,2023,44(11):1931-1948.
 SU Xianbo,WANG Qian,YU Shiyao, et al. Integrated development technology path for deep coal measure gas based on lownegative carbon emission reduction [J]. Acta Petrolei Sinica, 2023,44(11):1931-1948.
- [6] LOG A M, HAMMER M, MUNKEJORD S T. A flashing flow model for the rapid depressurization of CO₂ in a pipe accounting for bubble nucleation and growth[J]. International Journal of Multiphase Flow, 2024, 171:104666.
- [7] 生态环境部环境规划院,中国科学院武汉岩土力学研究所,中国 21世纪议程管理中心.中国二氧化碳捕集利用与封存(CCUS)年 度报告(2021)一中国 CCUS 路径研究[R].北京:生态环境部环 境规划院,中国科学院武汉岩土力学研究所,中国 21世纪议程 管理中心,2021.

Chinese Academy of Environmental Planning, Insitute of Roc and Soil Mechanics, Chinese Academy of Sciences, The Adminisaive Center for China's Agenda 21. Annual report on carbon dioxide capture, utilization, and storage (CCUS) in China (2021)- Research on the CCUS Pathway in China[R]. Chinese Academy of Environmental Planning, Insitute of Roc and Soil Mechanics, Chinese Academy of Sciences, The Adminisaive Center for China's Agenda 21.

- [8] FENG Yaorong, HUO Chunyong, ZHUANG Chuanjing, et al.
 Fracture control of the 2nd west to east gas pipeline in China
 [J]. Procedia Structural Integrity, 2019, 22:219-228.
- [9] 甄莹,常群,李发根,等. 基于裂纹尖端张开角的 Battelle 双曲线 模型修正[J]. 石油学报,2022,43(11):1642-1651.
 ZHEN Ying, CHANG Qun, LI Fagen, et al. Battelle two-curve model correction based on crack tip opening angle[J]. Acta Petrolei Sinica,2022,43(11):1642-1651.
- [10] MICHAL G,ØSTBY E,DAVIS B J, et al. An empirical fracture control model for dense-phase CO₂ carrying pipelines[C] // Proceedings of the 13th International Pipeline Conference. Virtual: ASME,2020.
- [11] COSHAM A, JONES D G, ARMSTRONG K, et al. Analysis of a dense phase carbon dioxide full-scale fracture propagation test in 24 inch diameter pipe[C]//Proceedings of the 11th International Pipeline Conference. Calgary, Alberta, Canada, ASME, 2016.
- [12] MICHAL G, DAVIS B, ØSTBY E, et al. CO₂SAFE-ARREST: a full-scale burst test research program for carbon dioxide pipelines-Part 2: is the BTCM out of touch with dense-phase CO₂[C]// Proceedings of the 12th International Pipeline Conference. Calgary, Alberta, Canada: ASME, 2018.
- [13] GODBOLE A, LIU Xiong, MICHAL G, et al. CO₂SAFE-AR-REST: a full-scale burst test research program for carbon dioxide pipelines-Part 3: dispersion modelling [C] // Proceedings of the 12th International Pipeline Conference. Calgary, Alberta, Canada; ASME, 2018.
- [14] COSHAM A, JONES D G, ARMSTRONG K, et al. Analysis of

two dense phase carbon dioxide full-scale fracture propagation tests[C]//Proceedings of the 10th International Pipeline Conference. Calgary, Alberta, Canada; ASME, 2014.

- [15] SKARSVÅG H L, HAMMER M, MUNKEJORD S T, et al. Towards an engineering tool for the prediction of running ductile fractures in CO₂ pipelines[J]. Process Safety and Environmental Protection, 2023, 171:667-679.
- [16] LINTON V, LEINUM B H, NEWTON R, et al. CO₂SAFE-AR-REST: a full-scale burst test research program for carbon dioxide pipelines - Part 1: project overview and outcomes of test 1[C]// Proceedings of the 12th International Pipeline Conference. Calgary, Alberta, Canada: ASME, 2018.
- [17] DET NORSKE VERITAS. Design and operation of carbon dioxide pipelines: DNVGL-RP-F104[S]. Veritasveien, Norway: DNV, 2021.
- [18] TALEMI R H.BROWNB S.MARTYNOV S.et al. Assessment of brittle fractures in CO₂ transportation pipelines: a hybrid fluidstructure interaction model[J]. Procedia Structural Integrity, 2016,2:2439-2446.
- [19] AURSAND E, DUMOULIN S, HAMMER M, et al. Fracture propagation control in CO₂ pipelines: validation of a coupled fluid-structure model[J]. Engineering Structures, 2016, 123: 192-212.
- [20] NORDHAGEN H O, MUNKEJORD S T, HAMMER M, et al. A fracture-propagation-control model for pipelines transporting CO₂-rich mixtures including a new method for material-model calibration[J]. Engineering Structures, 2017, 143: 245-260.
- [21] KEIM V, PAREDES M, NONN A, et al. FSI-simulation of ductile fracture propagation and arrest in pipelines: comparison with existing data of full-scale burst tests[J]. International Journal of Pressure Vessels and Piping, 2020, 182, 104067.
- [22] KEIM V, MARX P, NONN A, et al. Fluid-structure-interaction modeling of dynamic fracture propagation in pipelines transporting natural gases and CO₂-mixtures[J]. International Journal of Pressure Vessels and Piping, 2019, 175, 103934.
- [23] LIAO Yi,LIU Changlei,LIAO Kexi, et al. Dynamic fracture analysis of natural gas pipelines based on a cohesive zone model[J]. International Journal of Structural Stability and Dynamics, 2022, 22(12): 2250118.
- [24] SUN Dexin, CHEN Yujie, CHAO Haoyu, et al. A dynamic fracture finite element model of the buried gas transmission pipeline combining soil constraints and gas decompression[J]. Engineering Fracture Mechanics, 2022, 276, 108864.
- [25] ZHU Xiaohua, DENG Zilong, LIU Weiji. Dynamic fracture analysis of buried steel gas pipeline using cohesive model[J]. Soil Dy-

namics and Earthquake Engineering, 2020, 128:105881.

[26] 甄莹,常群,曹字光,等.纳入裂尖位置实时预测的天然气管道裂纹 扩展模拟方法[J].中国石油大学学报(自然科学版),2022,46(4): 143-151.

ZHEN Ying, CHANG Qun, CAO Yuguang, et al. Simulation method for crack propagation of natural gas pipelines with real-time prediction of crack tip position[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(4): 143-151.

- [27] TALEMI R,COOREMAN S,MAHGEREFTEH H, et al. A fully coupled fluid-structure interaction simulation of three-dimensional dynamic ductile fracture in a steel pipeline[J]. Theoretical and Applied Fracture Mechanics,2019,101:224-235.
- [28] BASSINDALE C, WANG Xin, TYSON W R, et al. Fast ductile fracture:effect of inertia on propagation resistance and CTOA in pipe steels[J]. International Journal of Pressure Vessels and Piping, 2020, 187:104163.
- [29] FREDJ A, DINOVITZER A. Three-dimensional response of buried pipelines subjected to large soil deformation effects: part I—
 3D continuum modeling using ALE and SPH formulations[C]//
 Proceedings of the 8th International Pipeline Conference. Calgary: ASME, 2010.
- [30] FREDJ A.DINOVITZER A. Three-dimensional response of buried pipelines subjected to large soil deformation effects:part II effects of the soil restraint on the response of pipe/soil systems [C]// Proceedings of the 8th International Pipeline Conference. Calgary:ASME.2010.
- [31] 赵青,李玉星,李顺丽. 超临界二氧化碳管道杂质对节流温降的 影响[J]. 石油学报,2016,37(1):111-116.
 ZHAO Qing, LI Yuxing, LI Shunli. Influence of impurities in pipeline on the temperature drop of supercritical carbon dioxide throttling[J]. Acta Petrolei Sinica,2016,37(1):111-116.
- [32] BASSINDALE C, WANG Xin, TYSON W R, et al. Modeling the effect of backfill on dynamic fracture propagation in steel pipelines[J]. Journal of Pipeline Science and Engineering, 2022, 2(3):100069.
- [33] ZHEN Ying, ZU Yizhen, CAO Yuguang, et al. Effect of accurate prediction of real-time crack tip position on dynamic crack behaviors in gas pipeline[J]. Journal of Natural Gas Science and Engineering, 2021, 94:104136.
- [34] GRUBEN G, MACDONALD K, MUNKEJORD S T, et al. Pipeline fracture control concepts for Norwegian offshore carbon capture and storage [C] // Proceedings of the 13th International Pipeline Conference. Virtual: ASME, 2020.

(收稿日期 2023-07-29 改回日期 2024-02-22 编辑 王培玺)